Ocean Color Climate Records NASA REASON CAN

Watson Gregg
NASA/GSFC/Global Modeling and Assimilation Office

Ocean Color Climate Records

Global Mean Air Temperature: 0.74° increase 1906-2005 (IPCC 2007)

From Hansen et al. 2006, PNAS

SST: 0.2°C increase 1980-2003 (OISST)

(from Rayner et al 192, JGR)

Does ocean chlorophyll respond?

Does ocean chlorophyll play a role?

Global Trend Analyses

Gregg et al. (2005, GRL): 4% increase 1998-2003 (P<0.05) 10% increase on coasts (<200m bottom depth)

No change open ocean

Behrenfeld et al. (2006, Nature): 0.01 Tg integrated chl decrease per year 40°S to 40°N, 1999-mid-2006 (P<0.0001)

No change poleward of 40°

Both used SeaWiFS and matched changes to changes in other climate variables

Longer-Term Global Analyses

Gregg and Conkright (2002, GRL): 6% decline 1980's (CZCS) to 2000's (SeaWiFS)

Entire CZCS record (1979-1986), SeaWiFS (1997-2000) Open ocean only

Antoine et al. (2005, JGR): 22% increase
CZCS record (1979-1983), SeaWiFS (1998-2002)
Case 1 waters, open ocean only; Maximum 1.5 mg m⁻³

Both used consistent algorithms for CZCS and SeaWiFS

Using a single sensor (SeaWiFS) trends can be reconciled between different approaches/investigators; trends are consistent with climate changes

Changes determined from different sensors are not in agreement, despite consistent processing methodologies across sensors, but reconciliation is possible (confirmation is more difficult)

MODIS-Aqua provides a test of the consistent processing/consistent data assumption: coincident with SeaWiFS

Regional Annual Trends

Linear trends using 7-year average/composite images were calculated, and when significant (P < 0.05), shown here.

Maybe there is something different between SeaWiFS and MODIS that is not corrected by consistent processing.

Or maybe consistent processing is not enough.

Ocean Color Climate Records NASA REASON CAN

Goal:

Provide consistent, seamless time series of Level-3 ocean color data from 1979, with a 9-year gap (1987-1996)

Produce Climate/Earth Science Data Records (CDR/ESDR) of ocean color

Make CDR's available to the public

CDR: A time series of sufficient length, consistency, and continuity to determine climate variability and change National Research Council, 2004

Technical Definition of Consistent/Seamless:

all temporal sensor artifacts removed no obvious interannual discontinuities unattributable to natural variability

all known mission-dependent biases removed or quantified similar data quality and structure

New and Post-Processing Enhancements

Fine-tune radiance-chlorophyll relationships post-processing Correct for residual biases

In situ data blending

Integrate Models
Aerosols
Data assimilation

All of the above

NASA Ocean Biogeochemical Model (NOBM)

Chlorophyll, Phytoplankton Groups
Primary Production

Outputs:

Nutrients
DOC, DIC, pCO₂
Spectral Irradiance/Radiance

Global model grid: domain: 84°S to 72°N 1.25° lon., 2/3° lat. 14 layers

Global Annual Mean Chlorophyll

Advantages of Data Assimilation

Achieves desired consistency, with low bias Responds properly to climatic influences Full daily coverage – no sampling error Effective use of data to keep model on track Only spatial variability required from sensors

Disadvantages of Data Assimilation

Low resolution (for now)

No coasts (for now)

Excessive reliance on model biases

Cannot validate model trends with sensor data

Compared to In situ Data

	Bias	Uncertainty	N
SeaWiFS	-1.3%	32.7%	2086
Free-run Model	-1.4%	61.8%	4465
Assimilation Model	0.1%	33.4%	4465

Can the CZCS provide a Climate Data Record?

CDR: A time series of sufficient length, consistency, and continuity to determine climate variability and change National Research Council, 2004

(from Gregg and Conkright, 2002 GRL)

CZCS Deficiencies

1) Low SNR

Solution: Take mean over 25km

2) 5 bands, only 4 of which quantitatively useful

-- limits aerosol detection capability

Solution: Innovative approaches for aerosols

3) Navigation

Solution: Bias corrected, orbit vectors obtained, reconstructing viewing angles

4) El Chichon

Solution: Tighter restriction on reflectance

5) Anomalous behavior post-1981

Solution: Don't use Band 2

6) Sampling

CZCS Sampling

Ship observations per decade: light symbol=10, medium=100, dark=400 from Rayner etal 1993, JGR

Ocean Color Climate Records

Distinct from Operations Data Sets managed by OGBP

Stored at GES-DAAC, access using Giovanni

L3 format, 25-km, monthly, consistent with other climate data sets

Includes discontinuous time series
1978-1986; 1996-2005
chlorophyll only for now
mission names not mentioned except under detailed information

Facilitates new and post-processing advances to ensure CDR consistency

Does not interfere with operations requirements and community

Climate Records Issues

- 1) How calibrate historical and future sensors, maintaining consistency?
- 2) Is BRDF a good idea?
- 3) Can we define more rigorous metrics than in situ comparisons, that constrain global mean estimates?
- 4) Is it acceptable to have two data streams:

 operational (best available methods; mission-dependent,

 high resolution)

 climate (maximum commonality/consistency of methods,

 low resolution)?
- 5) How much consistency can we achieve without resorting to postprocessing methods (blending of in situ data, assimilation)?